人工知能・機械学習・自然言語処理周辺の技術情報

Category Archives: 非エンジニア向け

技術解説
研究ブログ
自然言語処理
非エンジニア向け

【品詞別】日本語のストップワード辞書・正規表現とその考察【自然言語処理】

執筆:内野良一

自然言語処理の各タスクで前処理としてストップワードの除去があります.
解析の精度を上げるために不要な記号や単語を等をデータセットから除去します.
ストップワードの選定にはタスクに特化した分析が必要ですが,ある程度整理されているデータがあるととても助かります.
そこで,今回は私が自然言語処理のタスクでよく行う,日本語のストップワードについてまとめました.
また単語の分布などから,品詞ごとのストップワードに対する考察も行いました.
このことからストップワードを介して自然言語処理のあまり語らることのない知識などをご共有できればと思います.
(この記事の考察部分は主に自然言語処理の初心者を対象としています.)

(more…)

関連記事はこちら

【人工知能(AI)】ディープラーニングの仕組み!中学生でもなんとなくわかる!【入門】

執筆:内野良一

人工知能(AI)DeepLearning(ディープラーニング),この頃よく聞きますよね.
しかし,いまいち何なのかよくわからないという人は多いのではないでしょうか.
私の周りの人たちも教養として興味はあるけれども,数式が出てくると何がなんだかという人が多いようです.
また,人工知能やディープラーニングをビジネスに応用したいけど何ができるのか全く見当もつかないといった人も多いようです.
そもそも,ディープラーニングとはなんのことなんでしょう.AIや機械学習との違いはどこにあるのでしょう.
そこで今回はエンジニアや理系の学生でない人に向けて,ディープラーニング(主にその基礎となるニューラルネット)の仕組み原理アルゴリズム種類,それが何の役に立つのかについて解説してみようと思います.
このような場合には,よくわからない記号が出てくる数式は避けるべきだと思います.
しかし,すべてを包み隠されて説明しても納得できないと思うので,今回は入門者初学者を対象に中学校で習う範囲の知識で,簡単になんとなく理解できるように工夫して書いてみます.
難しい部分は数式の代わりに図解していきます.
もしこの記事で興味を持ってもっと知りたいと思ったら,線形代数微分積分統計学を勉強してみることをおススメします.

(more…)

関連記事はこちら